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Supervised learning for sequence modelling

* Given a ground-truth trajectory, maximize the predictability of a next
action: maxlog p(x¢|x<¢)

 Maximum (log-)likelihood estimation , ,
Example) p(the, cat, is, eating)
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e TWo issues
1. Weak correlation with a true reward

2. Mismatch between training and
inference
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Reinforcement learning

* Maximize a true reward instead of probabilities
* Inferenceis a part of training: better match between these two
* Q-learning, REINFORCE, actor-critic, ...

* Great, except that
1. Sparse reward

2. High variance of gradient estimate _,@_,
3. Difficult balance between exploration

and exploitation

Example) p(the cat, is eating)
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Active Imitation learning
as an intermediate step

* Works okay, butlikely not optimal '« Exact, but sparse reward
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Active Imitation learning
as an intermediate step

DAgger 6\@(6\“%

Initialize/pre-train a policy with supervised learning go?® oo

<
Let the policy drive, while collecting the oracle’s decisions o
Retrain a policy with the aggregated data

Iterate 2 — 3 until convergence

A S

[Finetune with reinforcement learning]

Easier, because most action sequences

end up with some positive reward
[Ross et al., 2011; and others]



Active Imitation learning
as an intermediate step
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Figure 1: Image from Super Tux Kart’s Star Track.  [Rossetal.,2011; and others]
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Safer Active Imitation learning
as an intermediate step

SafeDAgger (1)« H

Convolutional Network

Safety Net

2016-07-24 [Zhang and Cho, 2016; Laskey et al., 2016]



Safer Active Imitation learning
y as an intermediate step

v
SafeDAgger '6 =g — v~ _ﬂz_’ re{-1,1}
% xent (7, 7™)

[ Convolutional Network

Safety Net

[Zhang and Cho, 2016; Laskey et al., 2016] °
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Safer Active Imitation learning
as an intermediate step

SafeDAgger

Initialize/pre-train a policy with supervised learning
Let the policy drive
Collect a data point only when it’s not safe

Retrain a policy with the aggregated data
Iterate 2 — 3 until convergence
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[Finetune with reinforcement learning]

[Zhang and Cho, 2016; Laskey et al., 2016]



Safer Active Imitation learning
as an intermediate step

SafeDAgger
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Active Imitation learning
as an intermediate step
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Rollout policy SL policy network RL policy network Value network
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Human expert positions Self-play positions

[Silver et al., Nature 2016]



Strong learning systems are expected to be

Patchwork of many learning algorithms

* Unsupervised learning:
Efficient learning of state representation “\5
* Supervised learning: \ea
Efficient learning of action repr- ‘ \“
Stable, focused learning ~° X b
oV

* Active learning: \N
Making sur \\0 .1«ng more robust to mistakes

* Reinf~ \\\ «rning:

\ \ ,ased on a true reward and test time inference algorithm.

_ctween state and action
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